\qquad
\qquad
\qquad

Chapter 14 Study Guide

Multiple Choice

1. In which of the following is no work done?
a. climbing stairs
c. pushing a shopping cart
b. lifting a book
d. doing a handstand
2. A force acting on an object does no work if
a. a machine is used to move the object.
b. the force is not in the direction of the object's motion.
c. the force is greater than the force of friction.
d. the object accelerates.
3. What is the unit of work?
a. joule
c. watt
b. newton/meter
d. all of the above
4. If you exert a force of 10.0 N to lift a box a distance of 1.0 m , how much work do you do?
a. $\quad 10.0 \mathrm{~J}$
b. $\quad 100.0 \mathrm{~J}$
c. 0.1 J
d. $\quad 11.0 \mathrm{~J}$
5. If you perform 20 joules of work lifting a $10-\mathrm{N}$ box from the floor to a shelf, how high is the shelf?
a. $\quad 2.0 \mathrm{~m}$
b. $\quad 10 \mathrm{~m}$
c. 0.5 m
d. 200 m
6. The SI unit of power is the
a. joule.
c. newton-meter.
b. newton.
d. watt.
7. The power of a machine measures
a. its rate of doing work.
c. the force it produces.
b. its strength.
d. the work it does.
8. 2984 watts equals about how many horsepower?
a. 16
b. 4
c. 24
d. 8
9. A machine is a device that can multiply
a. force.
c. work.
b. power.
d. all of the above
10. When a machine does work, it cannot do which of the following?
a. change the direction of a force.
b. increase a force and change the distance a force moves.
c. increase the distance a force moves and change the direction of a force.
d. increase a force and increase the distance a force moves an object.
11. How can a machine make work easier for you?
a. by decreasing the amount of work you do
b. by changing the direction of your force
c. by increasing the work done by the machine
d. none of the above
12. How can you make the work output of a machine greater than the work input?
a. by decreasing friction
b. by increasing the input force
c. by increasing the output distance
d. this is impossible
13. The actual mechanical advantage of a machine
a. cannot be less than 1 .
b. decreases as the input distance increases.
c. increases with greater friction.
d. is less than the ideal mechanical advantage of the machine.
14. If you have to apply 40 N of force on a crowbar to lift a rock that weights 400 N , what is the actual mechanical advantage of the crowbar?
a. 0.1
b. 10
c. 360
d. 16,000
15. A $120-\mathrm{m}$ long ski lift carries skiers from a station at the foot of a slope to a second station 40 m above. What is the IMA of the lift?
a. 0.3
b. 3
c. 40
d. 160
16. The efficiency of a machine is always less than 100 percent because
a. a machine cannot have an IMA greater than 1 .
b. some work input is lost to friction.
c. the work input is too small.
d. the work output is too great.
17. A mechanical device requires 420 J of work to do 230 J of work in lifting a crate. What is the efficiency of the device?
a. 0.5%
b. 190%
c. 55%
d. 183%
18. A motor with an efficiency of 75 percent must supply 240 J of useful work. What amount of work must be supplied to the motor?
a. 75 J
b. 180 J
c. 320 J
d. 420 J
19. An inclined plane reduces the effort force by
a. increasing the distance through which the force is applied.
b. increasing the work.
c. reducing the effort distance.
d. reducing the work.
20. An ax is an example of $a(a n)$
a. inclined plane.
c. wedge.
b. lever.
d. wheel and axle.
21. Which of the following is an example of a wheel and axle?
a. hammer
b. an automobile steering wheel
c. a jar lid
d. a pencil
22. The ideal mechanical advantage of a pulley system is equal to the
a. distance the load has to move.
b. length of the rope.
c. number of rope segments supporting the load.
d. weight of the object being lifted.
23. The ideal mechanical advantage of a wheel and axle is found by
a. multiplying the circumference of the wheel by the radius of the axle.
b. dividing the radius of the wheel by the radius of the axle.
c. dividing the radius of the axle by the radius of the wheel.
d. multiplying the radius of the wheel by the radius of the axle.
24. An example of a compound machine is a
a. crowbar.
c. ramp.
b. bicycle.
d. seesaw.
25. A machine is classified as a compound machine if it
a. has moving parts.
b. has an IMA greater than 1 .
c. is made up of two or more simple machines that operate together.
d. is very efficient.

Completion

Complete each statement.
26. The rate at which work is done is called \qquad .
27. The SI unit of power is the \qquad .
28. A device that changes the size or direction of force used to do work is called $\mathrm{a}(\mathrm{an})$ \qquad .
29. The force that is exerted on a machine is called the \qquad force.
30. The \qquad of a machine is the number of times that the machine increases the input force.
31. The mechanical efficiency of any machine is always \qquad than 100 percent.
32. $\mathrm{A}(\mathrm{An})$ \qquad can be described as an inclined plane wrapped around a cylinder.
33. As the thickness of a wedge of given length increases, its IMA \qquad .

Short Answer

34. If a simple machine provides an increased output force, what happens to the output distance?
35. Why is the work output of a machine never equal to the work input?
36. If a simple machine could be frictionless, how would its IMA and AMA compare?
37. Which has the greater IMA—a screw with closely spaced threads or a screw with threads spaced farther apart?
38. You do 400 J of work with a pulley. If the pulley does 380 J of work, what is the efficiency of the pulley?
\qquad

Problem

39. A worker uses a cart to move a load of bricks weighing 680 N a distance of 10 m across a parking lot. If he pushes the cart with a constant force of 209 N , what amount of work does he do? Show your work.
40. A girl lifts a $160-\mathrm{N}$ load a height of 1 m in a time of 0.5 s . What power does the girl produce? Show your work.
41. To pull a tree out of a yard, you can apply a force of 50 N to the shovel. The shovel applies a force of 900 N to the tree. What is the AMA advantage of the shovel?
42. The input force of a pulley system must move 8.0 m to lift a $3000-\mathrm{N}$ engine a distance of 2.0 m . What is the IMA of the system? Show your work.
43. A $20-\mathrm{N}$ force applied to the handle of a door produces a $44-\mathrm{N}$ output force. What is the AMA of the handle? Show your work.

Other

USING SCIENCE SKILLS

Figure 14-2
44. Calculating What is the IMA of the ramp in Figure 14-2? Show your work.

Chapter 14 Study Guide

Answer Section

MULTIPLE CHOICE

1. ANS: D

BLM: knowledge
2. ANS: B

BLM: comprehension
3. ANS: A

PTS: 1
BLM: knowledge
4. ANS: A

BLM: application
5. ANS: A

BLM: application
6. ANS: D

BLM: knowledge
7. ANS: A

PTS: 1
BLM: knowledge
8. ANS: B

BLM: application
9. ANS: A

BLM: knowledge
10. ANS: D

PTS: 1
BLM: comprehension
11. ANS: B PTS: 1

BLM: knowledge
12. ANS: D

PTS: 1
BLM: comprehension
13. ANS: D

PTS: 1
BLM: knowledge
14. ANS: B

BLM: application
15. ANS: B

BLM: application
16. ANS: B

BLM: knowledge
17. ANS: C

BLM: application
18. ANS: C

BLM: application
19. ANS: A

BLM: knowledge
20. ANS: C

BLM: knowledge

DIF: L1

DIF: L2

DIF: L1

DIF: L2

DIF: L2

DIF: L1

DIF: L1

DIF: L2

DIF: L1

DIF: L2

DIF: L1

DIF: L2

DIF: L1

DIF: L1

DIF: L2

DIF: L1

DIF: L2

DIF: L2

DIF: L1

DIF: L1

OBJ: 14.1.1

OBJ: 14.1.1

OBJ: 14.1.2

OBJ: 14.1.2

OBJ: 14.1.2

OBJ: 14.1.3

OBJ: 14.1.3

OBJ: 14.1.4

OBJ: 14.2.1

OBJ: 14.2.1

OBJ: 14.2.2

OBJ: 14.2.2

OBJ: 14.3.1

OBJ: 14.3.2

OBJ: 14.3.2

OBJ: 14.3.3

OBJ: 14.3.4

OBJ: 14.3.4

OBJ: 14.4.1

OBJ: 14.4.1
21. ANS: B
BLM: knowledge PTS: 1 \quad DIF: L1 \quad OBJ: 14.4 .1

COMPLETION

26. ANS: power

PTS: 1 DIF: L1 OBJ: 14.1.3 BLM: knowledge
27. ANS: watt

PTS: 1
DIF: L1
OBJ: 14.1.3 BLM: knowledge
28. ANS: machine

PTS: 1
DIF: L1
OBJ: 14.2.1
BLM: knowledge
29. ANS: input

PTS: 1
DIF: L1
OBJ: 14.2.2
BLM: knowledge
30. ANS: mechanical advantage

PTS: 1 DIF: L1
OBJ: 14.3.1
BLM: knowledge
31. ANS: less

PTS: 1
DIF: L1
OBJ: 14.3.3
BLM: knowledge
32. ANS: screw

PTS: 1
DIF: L1
OBJ: 14.4.1
BLM: knowledge
33. ANS: decreases

PTS: 1
DIF: L1
OBJ: 14.4.2
BLM: knowledge

SHORT ANSWER

34. ANS:

The simple machine reduces the output distance.
PTS: 1
DIF: L1
OBJ: 14.2.1
BLM: knowledge
35. ANS:

Some of work input is used to overcome friction.
PTS: 1 DIF: L1 OBJ: 14.2.2 BLM: knowledge
36. ANS:

They would be equal.
PTS: 1
DIF: L2
OBJ: 14.3.1
BLM: analysis
37. ANS:
the screw with closely spaced threads
PTS: 1 DIF: L2 OBJ: 14.4.2 BLM: comprehension
38. ANS:

95\%
PTS: 1

PROBLEM

39. ANS:

Work $=$ Force \times Distance $=209 \mathrm{~N} \times 10 \mathrm{~m}=2090 \mathrm{~N} \cdot \mathrm{~m}=2090 \mathrm{~J}$
Work $=2090$ J

PTS: 1 DIF: L2 OBJ: 14.1.2 BLM: application
40. ANS:

Power $=\frac{\text { Work }}{\text { Time }}=\frac{\text { Force } \times \text { Distance }}{\text { Time }}=\frac{160 \mathrm{~N} \times 1 \mathrm{~m}}{0.5 \mathrm{~s}}=320 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=320 \mathrm{~J} / \mathrm{s}$
Power $=320 \mathrm{~J} / \mathrm{s}=320 \mathrm{~W}$
PTS: 1 DIF: L2 OBJ: 14.1.3 BLM: application
41. ANS:

18
PTS: 1 DIF: L2 OBJ: 14.3.2 BLM: application
42. ANS:

IMA $=\frac{\text { Input distance }}{\text { Output distance }}=\frac{8.0 \mathrm{~m}}{2.0 \mathrm{~m}}=4.0$
IMA $=4.0$

PTS: 1
DIF: L2
OBJ: 14.3.2
BLM: application
43. ANS:

AMA $=\frac{\text { Output force }}{\text { Input force }}=\frac{44 \mathrm{~N}}{20 \mathrm{~N}}=2.2$
$\mathrm{AMA}=2.2$
PTS: 1 DIF: L2 OBJ: 14.3.2 BLM: application

OTHER

44. ANS:

Ideal mechanical advantage $=\frac{\text { Input distance }}{\text { Output distance }}=\frac{3 \mathrm{~m}}{1 \mathrm{~m}}=3$
PTS: 1 DIF: L2 OBJ: 14.3.2 BLM: application

